Data Analysis in Linux

CJ Fearnley

cjf@LinuxForce.net
http://www.LinuxForce.net
cjf@CJFearnley.com
http://blog.CJFearnley.com

3 July 2013

Presentation to **PLUG: Philadelphia area Linux Users' Group** at the University of the Sciences (USP) in Philadelphia

On-line version of this presentation:

http://www.CJFearnley.com/Data.Analysis.PLUG.July2013.pdf

My Background

- I earned a BA in Mathematical Sciences and Philosophy from Binghamton University in 1989. But I skipped statistics.
- Some years ago I read the 2004 edition of Nassim Nicholas Taleb's Fooled by Randomness: The Hidden Role of Chance in live and in the Markets which was fascinating but excessively irreverent.
- In 2011, I read Leonard Mlodinow's 2008 bestseller The Drunkard's Walk: How Randomness Rules Our Lives which was exquisite.

My Background

- I earned a BA in Mathematical Sciences and Philosophy from Binghamton University in 1989. But I skipped statistics.
- Some years ago I read the 2004 edition of Nassim Nicholas Taleb's Fooled by Randomness: The Hidden Role of Chance in live and in the Markets which was fascinating but excessively irreverent.
- In 2011, I read Leonard Mlodinow's 2008 bestseller The Drunkard's Walk: How Randomness Rules Our Lives which was exquisite.

My Background

- I earned a BA in Mathematical Sciences and Philosophy from Binghamton University in 1989. But I skipped statistics.
- Some years ago I read the 2004 edition of Nassim Nicholas Taleb's Fooled by Randomness: The Hidden Role of Chance in live and in the Markets which was fascinating but excessively irreverent.
- In 2011, I read Leonard Mlodinow's 2008 bestseller The Drunkard's Walk: How Randomness Rules Our Lives which was exquisite.

My Background continued

• That led to me to write the essays Are Randomness and Uncertainty fundamental and pervasive?

http://blog.cjfearnley.com/2011/04/20/are-randomness-and-uncertainty-fundamental-and-p and Determinism and Randomness Always and Only Coexist

 $\verb|http://blog.cjfearnley.com/2012/02/21/determinism-and-randomness-always-and-only-coexign and the statement of the control of the coexign and the coexign a$

• Then last summer I read David Salsburg's The Lady Tasting Tea which was only good, but it taught me that there is no theory of statistics. Statistics is, at present, just a bunch of mathematical tricks which have been collected over time to try to understand something which we do not understand. Yet statistics is the basis of all modern science and as such it is the basis of knowledge and of modern civilization.

My Background continued

• That led to me to write the essays Are Randomness and Uncertainty fundamental and pervasive?

http://blog.cjfearnley.com/2011/04/20/are-randomness-and-uncertainty-fundamental-and-p and Determinism and Randomness Always and Only Coexist

 $\verb|http://blog.cjfearnley.com/2012/02/21/determinism-and-randomness-always-and-only-coexide and always-and-only-coexide and always-and-only-c$

• Then last summer I read David Salsburg's The Lady Tasting Tea which was only good, but it taught me that there is no theory of statistics. Statistics is, at present, just a bunch of mathematical tricks which have been collected over time to try to understand something which we do not understand. Yet statistics is the basis of all modern science and as such it is the basis of knowledge and of modern civilization.

Computing for Data Analysis

- Coursera course Computing for Data Analysis with Roger Peng of Johns Hopkins University
- http://www.coursera.org/course/compdata
- Intro video:
 - https://www.youtube.com/watch?v=gk6E57H6mTs
- Next offering in September (4 weeks)
- Computing for Data Analysis: Week 1

http://www.youtube.com/playlist?list=PLjTlxb-wKvXNSDfcKPFH2gzHGyjpeCZmJ

Computing for Data Analysis: Week 2

http://www.youtube.com/playlist?list=PLjTlxb-wKvXNnjUTX4C8IeIhPBjPkng6B

Computing for Data Analysis: Week 3

http://www.youtube.com/playlist?list=PLjTlxb-wKvXOzI2h0F2_rYZHIXz8GWBop

http://www.voutube.com/playlist?list=PLiTlxb-wKvXOdzvsAE6grEBN_aSBCOLZ

Computing for Data Analysis

- Coursera course Computing for Data Analysis with Roger Peng of Johns Hopkins University
- http://www.coursera.org/course/compdata
- Intro video:

https://www.youtube.com/watch?v=gk6E57H6mTs

- Next offering in September (4 weeks)
- Computing for Data Analysis: Week 1

http://www.youtube.com/playlist?list=PLjTlxb-wKvXNSDfcKPFH2gzHGyjpeCZmi

http://www.youtube.com/playlist?list=PLjTlxb-wKvXNnjUTX4C8IeIhPBjPkng6E

Computing for Data Analysis: Week 3

http://www.youtube.com/playlist?list=PLjTlxb-wKvX0zI2h0F2_rYZHIXz8GWBog
Computing for Data Analysis: Week 4

http://www.youtube.com/playlist?list=PLjTlxb-wKvXOdzysAE6qrEBN_aSBC0LZ

Computing for Data Analysis

- Coursera course Computing for Data Analysis with Roger Peng of Johns Hopkins University
- http://www.coursera.org/course/compdata
- Intro video:

https://www.youtube.com/watch?v=gk6E57H6mTs

- Next offering in September (4 weeks)
- Computing for Data Analysis: Week 1

http://www.youtube.com/playlist?list=PLjTlxb-wKvXNSDfcKPFH2gzHGyjpeCZmJ

Computing for Data Analysis: Week 2

Computing for Data Analysis: Week 3

http://www.youtube.com/playlist?list=PLjTlxb-wKvXOzI2h0F2_rYZHIXz8GWBop

Computing for Data Analysis: Week 4

http://www.youtube.com/playlist?list=PLjTlxb-wKvXOdzysAE6qrEBN_aSBC0LZS

CapeTown Open Education Declaration

"We are on the cusp of a global revolution in teaching and learning. Educators worldwide are developing a vast pool of educational resources on the Internet, open and free for all to use. These educators are creating a world where each and every person on earth can access and contribute to the sum of all human knowledge. They are also planting the seeds of a new pedagogy where educators and learners create, shape and evolve knowledge together, deepening their skills and understanding as they go."

CapeTown Open Education Declaration, 2007

http://www.capetowndeclaration.org/read-the-declaration See my presentation last year on "Education Automation Now and in the Future"

http://www.cjfearnley.com/Asheville.Education.Autor

CapeTown Open Education Declaration

"We are on the cusp of a global revolution in teaching and learning. Educators worldwide are developing a vast pool of educational resources on the Internet, open and free for all to use. These educators are creating a world where each and every person on earth can access and contribute to the sum of all human knowledge. They are also planting the seeds of a new pedagogy where educators and learners create, shape and evolve knowledge together, deepening their skills and understanding as they go."

CapeTown Open Education Declaration, 2007

 $\verb|http://www.capetowndeclaration.org/read-the-declaration|\\$

See my presentation last year on "Education Automation Now and in the Future"

http://www.cjfearnley.com/Asheville.Education.Autom

Data Analysis

- Coursera course Data Analysis with Jeff Leek of Johns Hopkins University
- http://www.coursera.org/course/dataanalysis
- Intro video: http://www.youtube.com/watch?v=-lutj1vrPwC
- Next offering in January (8 weeks)
- YouTube videos: http://www.youtube.com/user/jtleek200

Data Analysis

- Coursera course Data Analysis with Jeff Leek of Johns Hopkins University
- http://www.coursera.org/course/dataanalysis
- Intro video:

```
http://www.youtube.com/watch?v=-lutj1vrPwQ
```

- Next offering in January (8 weeks)
- YouTube videos: http://www.youtube.com/user/jtleek200

Data Analysis

- Coursera course Data Analysis with Jeff Leek of Johns Hopkins University
- http://www.coursera.org/course/dataanalysis
- Intro video:

```
http://www.youtube.com/watch?v=-lutj1vrPwQ
```

- Next offering in January (8 weeks)
- YouTube videos:

http://www.youtube.com/user/jtleek2007

Steps in a data analysis

Define the question

- Define the ideal data se
- Determine what data you can access
- Obtain the data
- Clean the data
- Exploratory data analysis
- Statistical prediction/modeling
- Interpret results
- Challenge results
- Synthesize/write up results
- Create reproducible code

- Define the question
- Define the ideal data set
- Determine what data you can access
- Obtain the data
- Clean the data
- Exploratory data analysis
- Statistical prediction/modeling
- Interpret results
- Challenge results
- Synthesize/write up results
- Create reproducible code

- Define the question
- Define the ideal data set
- Determine what data you can access
- Obtain the data
- Clean the data
- Exploratory data analysis
- Statistical prediction/modeling
- Interpret results
- Challenge results
- Synthesize/write up results
- Create reproducible code

- Define the question
- Define the ideal data set
- Determine what data you can access
- Obtain the data
- Clean the data
- Exploratory data analysis
- Statistical prediction/modeling
- Interpret results
- Challenge results
- Synthesize/write up results
- Create reproducible code

- Define the question
- Define the ideal data set
- Determine what data you can access
- Obtain the data
- Clean the data
- Exploratory data analysis
- Statistical prediction/modeling
- Interpret results
- Challenge results
- Synthesize/write up results
- Create reproducible code

- Define the question
- Define the ideal data set
- Determine what data you can access
- Obtain the data
- Clean the data
- Exploratory data analysis
- Statistical prediction/modeling
- Interpret results
- Challenge results
- Synthesize/write up results
- Create reproducible code

- Define the question
- Define the ideal data set
- Determine what data you can access
- Obtain the data
- Clean the data
- Exploratory data analysis
- Statistical prediction/modeling
- Interpret results
- Challenge results
- Synthesize/write up results
- Create reproducible code

- Define the question
- Define the ideal data set
- Determine what data you can access
- Obtain the data
- Clean the data
- Exploratory data analysis
- Statistical prediction/modeling
- Interpret results
- Challenge results
- Synthesize/write up results
- Create reproducible code

- Define the question
- Define the ideal data set
- Determine what data you can access
- Obtain the data
- Clean the data
- Exploratory data analysis
- Statistical prediction/modeling
- Interpret results
- Challenge results
- Synthesize/write up results
- Create reproducible code

- Define the question
- Define the ideal data set
- Determine what data you can access
- Obtain the data
- Clean the data
- Exploratory data analysis
- Statistical prediction/modeling
- Interpret results
- Challenge results
- Synthesize/write up results
- Create reproducible code

- Define the question
- Define the ideal data set
- Determine what data you can access
- Obtain the data
- Clean the data
- Exploratory data analysis
- Statistical prediction/modeling
- Interpret results
- Challenge results
- Synthesize/write up results
- Create reproducible code

Background

- For an eight hour work day a human can produce 0.6 kWh (Kilowatt hours) of energy. So a human can produce 219 kWh per year.
- An ox can produce at a rate of 450 W (watts) or 3.6 kWh per day. So an ox can produce 1,314 kWh per year.

Background

- For an eight hour work day a human can produce 0.6 kWh (Kilowatt hours) of energy. So a human can produce 219 kWh per year.
- An ox can produce at a rate of 450 W (watts) or 3.6 kWh per day. So an ox can produce 1,314 kWh per year.

Define the Question

Source: Global Sustainable Energy: Past, Present and Future https://www.coursera.org/course/globalenergy What is the geographical location of the countries that consume less than 219 kWh per year? Note that these are the countries that are essentially living on the equivalent of human power as their source of energy.

Also, what is the geographical location of the countries that consume less than 1,314 kWh per year? Note that these are the countries that are essentially living on the equivalent of oxen power as their source of energy.

How many countries are there in this list?

In terms of population, what is the largest country in this list?

Define the Question

Source: Global Sustainable Energy: Past, Present and Future https://www.coursera.org/course/globalenergy What is the geographical location of the countries that consume less than 219 kWh per year? Note that these are the countries that are essentially living on the equivalent of human power as their source of energy.

Also, what is the geographical location of the countries that consume less than 1,314 kWh per year? Note that these are the countries that are essentially living on the equivalent of oxen power as their source of energy.

How many countries are there in this list? In terms of population, what is the largest country in this list?

Define the Question

Source: Global Sustainable Energy: Past, Present and Future https://www.coursera.org/course/globalenergy What is the geographical location of the countries that consume less than 219 kWh per year? Note that these are the countries that are essentially living on the equivalent of human power as their source of energy.

Also, what is the geographical location of the countries that consume less than 1,314 kWh per year? Note that these are the countries that are essentially living on the equivalent of oxen power as their source of energy.

How many countries are there in this list?

In terms of population, what is the largest country in this list?

Define the Question

An Energy Slave is that quantity of energy (ability to do work) which, when used to construct and drive non-human infrastructure (machines, roads, power grids, fuel, draft animals, wind-driven pumps, etc.) replaces a unit of human labour (actual work). An energy slave does the work of a person, through the consumption of energy in the non-human infrastructure.

http://en.wikipedia.org/wiki/Energy_Slave

Define the ideal data set

Energy consumption data by country with population, energy consumption in kWh/y, and continent for columns.

Determine what data you can access

EIA: US Energy Information Administration

 International Energy Statistics, Total Primary Energy Consumption (Quadrillion Btu)

http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm?tid=44&pid=44&aid=2 Downloaded at 3 Apr 2013 at 06:05.

International Energy Statistics, Population (Millions)

 $\label{eq:http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm?tid=93&pid=44&aid=33} \\ Downloaded at 3 Apr 08:00.$

Obtain the data 1

Go to the URLs. Click Download Excel.
International Energy Statistics, Total Primary Energy Consumption

http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm?tid=44&pid=44&aid=2

Note: It might have been interesting to set the "Start Year" to 1980

Obtain the data 2

Go to the URLs. Click Download Excel. International Energy Statistics, Population

http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm?tid=93&pid=44&aid=33

Note: It might have been interesting to set the "Start Year" to 1980

Clean the data 1

- In gnumeric save as CSV
- In vim, delete the first line with the table name
- Delete 2 lines that look like , , , , , ,
- Add the column name "Country" to the first line

NOICH AMERICA ,, 71.00003,07.02120,00.04257,00.22477,70.00321,70.70340,71.24177,74.12101,70

Exploratory data analysis 1

```
$ R
```

```
R version 2.11.1 (2010-05-31) Copyright (C) 2010 The R Foundation for Statistical Computing ISBN 3-900051-07-0
```

R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R.

>

```
> head(EnergyConsumption)
                                    X2007
                                              X2008
                                                        X2009
                                                                   X2010
                                                                            X2011
                    Country X
              North America NA 122.86815 120.10351 114.62372 118.34544
                                                                               NA
2
                    Bermuda NA
                                  0.01018
                                            0.00981
                                                       0.00971
                                                                 0.00955
                                                                               NA
3
                     Canada NA 14.02585
                                           13.54625
                                                     13.09711
                                                                13.00072 13.49477
4
                  Greenland NA
                                  0.00826
                                                      0.00893
                                                                 0.00893
                                            0.00917
                                                                               NA
5
                     Mexico NA
                                 7.52670
                                            7.26255
                                                      6.94764
                                                                 7.28397
                                                                           7.8079
 Saint Pierre and Miguelon NA
                                  0.00122
                                            0.00123
                                                      0.00122
                                                                 0.00122
                                                                               NA
> tail(EnergyConsumption)
                 Country X
                                 X2007
                                           X2008
                                                     X2009
                                                                X2010 X2011
227
                   Tonga NA
                              0.00252
                                         0.00253
                                                   0.00252
                                                              0.00252
                                                                         MA
228 U.S. Pacific Islands NA
                              0.00450
                                         0.00507
                                                  0.00441
                                                              0.00513
                                                                         NA
229
                              0.00158
                                         0.00143
                                                   0.00175
                                                              0.00175
                 Vanuatu NA
                                                                         NA
230
                 Vietnam NA
                              1.41820
                                         1.63544
                                                   1.67657
                                                              1.86492
                                                                         NA
231
             Wake Island NA
                              0.01986
                                         0.01888
                                                   0.01932
                                                              0.01916
                                                                         NA
232
                   World NA 482.86461 490.68974 487.58009 510.55101
                                                                         NA
> nrow(EnergyConsumption)
[1] 232
> ncol(EnergyConsumption)
[1] 7
```

```
> options(width = 90)
> head(Population)
                    Country X
                                    X2007
                                              X2008
                                                         X2009
                                                                   X2010
                                                                              X2011
              North America NA 442.99861 447.39306 451.60196 455.69066 459.47897
                    Bermuda NA
                                  0.06692
                                            0.06739
                                                       0.06784
                                                                 0.06827
                                                                            0.06868
3
                                           33.21270
                     Canada NA 32.93596
                                                      33.48721
                                                                33.75974
                                                                           34.03059
4
                  Greenland NA
                                  0.05753
                                            0.05756
                                                       0.05760
                                                                 0.05764
                                                                            0.05767
                     Mexico NA 108.70089 109.95540 111.21179 112.46886 113.72423
                                  0.00610
                                                       0.00600
                                                                            0.00589
 Saint Pierre and Miguelon NA
                                            0.00605
                                                                 0.00594
> tail(Population)
                                  X2007
                                             X2008
                                                         X2009
                                                                    X2010
                                                                                X2011
                 Country X
227
                   Tonga NA
                                0.10441
                                           0.10488
                                                       0.10529
                                                                  0.10563
                                                                              0.10592
228 U.S. Pacific Islands NA
                                     NΑ
                                                 NΑ
                                                            NΑ
                                                                       NΑ
                                                                                   NA
229
                                0.22882
                                           0.23430
                                                       0.23978
                                                                  0.24525
                                                                              0.25072
                 Vanuatu NA
                               86.51885
                                          87.55836
                                                      88.57676
                                                                 89.57113
230
                 Vietnam NA
                                                                             90.54939
231
             Wake Island NA
                                     NA
                                                 NA
                                                            NΑ
                                                                       NA
                                                                                   NΑ
232
                   World NA 6630.84486 6707.59554 6785.78950 6863.18955 6940.14288
> nrow(Population)
[1] 232
> ncol(Population)
[1] 7
```

Exploratory data analysis 5

Subsetting.

```
> Population[c(1,8:10),]
                   Country X
                                   X2007
                                              X2008
                                                        X2009
                                                                   X2010
                                                                             X2011
             North America NA 442.99861 447.39306 451.60196 455.69066 459.47897
   Central & South America NA 457.58593 462.78618 467.90774 472.68456 477.59348
                Antarctica NA
                                      NA
                                                 NA
                                                           NA
                                                                      NA
10
       Antigua and Barbuda NA
                                 0.08343
                                            0.08452
                                                      0.08563
                                                                 0.08675
                                                                           0.08788
   Population[is.na(Population$X2011),]
                          Country X X2007 X2008 X2009 X2010 X2011
9
                       Antarctica NA
                                               NΔ
                                                     NA
                                                           NΔ
                                         MA
                                                                  MA
66
           Former Czechoslovakia NA
                                         NA
                                               NA
                                                     NA
                                                           NA
                                                                  NA
67
    Former Serbia and Montenegro NA
                                        NA
                                               NA
                                                     NA
                                                           NA
                                                                  NA
68
               Former Yugoslavia NA
                                        NA
                                               NΔ
                                                     NA
                                                           NA
                                                                  NA
71
                   Germany, East NA
                                        NA
                                               NA
                                                     NA
                                                           NA
                                                                  NA
72
                   Germany, West NA
                                         NA
                                               NA
                                                     NA
                                                           NA
                                                                  NA
101
                  Former II S S R NA
                                         NΑ
                                               NΔ
                                                     NΑ
                                                           NΑ
                                                                  NΑ
199
             Hawaiian Trade Zone NA
                                        NΑ
                                               NA
                                                     NA
                                                           NA
                                                                  NA
228
            U.S. Pacific Islands NA
                                        NA
                                               NA
                                                     NA
                                                           NA
                                                                  NA
231
                     Wake Island NA
                                         NΑ
                                               NΔ
                                                     NA
                                                           NΔ
                                                                  NA
> numpopcols <- ncol(Population)
> Population[1,3:numpopcols]
     X2007
              X2008
                       X2009
                                X2010
                                         X2011
1 442 9986 447 3931 451 602 455 6907 459 479
```

```
> EnergyConsumption[1,]
       Country X X2007 X2008
                                    X2009
                                             X2010 X2011
1 North America NA 122.8681 120.1035 114.6237 118.3454
> sapply(EnergyConsumption[1,],class)
                                                 X2009
   Country
                                      X2008
                                                            X2010
                    Х
                           X2007
                                                                       X2011
"character" "logical" "numeric" "numeric"
                                            "numeric"
                                                         "numeric" "character"
> Population[1,]
                 X2007
                              X2008
                                       X2009
                                                X2010
                                                         X2011
       Country X
1 North America NA 442.99861 447.39306 451.60196 455.69066 459.47897
> sapply(Population[1,],class)
                                      X2008
                                                 X2009
                                                            X2010
   Country
                           X2007
                                                                       X2011
"character" "logical" "character" "character" "character" "character"
```

Clean the data 2

```
> Population[,3:numpopcols] <- lapply(Population[,3:numpopcols],as.numeric)</pre>
Warning messages:
1: In lapply(Population[, 3:numpopcols], as.numeric):
 NAs introduced by coercion
2: In lapply(Population[, 3:numpopcols], as.numeric):
 NAs introduced by coercion
3: In lapply(Population[, 3:numpopcols], as.numeric):
 NAs introduced by coercion
4: In lapply(Population[, 3:numpopcols], as.numeric) :
 NAs introduced by coercion
5: In lapply(Population[, 3:numpopcols], as.numeric) :
 NAs introduced by coercion
> sapply(Population[1,],class)
                                          X2008
    Country
                              X2007
                                                       X2009
                                                                   X2010
                                                                               X2011
"character" "logical"
                         "numeric"
                                       "numeric"
                                                   "numeric"
                                                               "numeric"
                                                                           "numeric"
```

Exploratory data analysis 7

More subsetting.

```
> aggregates <- c("North America", "Central & South America", "Europe", "Eurasia",
"Middle East", "Africa", "Asia & Oceania", "World")
> head(EnergyConsumption[EnergyConsumption$Country %in% aggregates,])
                   Country X
                                 X2007
                                           X2008
                                                     X2009
                                                               X2010 X2011
1
             North America NA 122.86815 120.10351 114.62372 118.34544
                                                                        NA
   Central & South America NA 24.66038 25.70090 25.28353 26.86867
                                                                       NA
54
                    Europe NA 86.69852 85.64615 81.21917 83.82449
                                                                       NA
96
                   Eurasia NA 44.02493 45.06215 40.37198
                                                            42.83648
                                                                       NA
113
               Middle East NA 23.94363 26.09924 27.44746
                                                            28.73368
                                                                        NA
128
                    Africa NA 14.99456 16.09403 15.92452
                                                            16.32675
                                                                        NA
> head(subset(EnergyConsumption,Country %in% aggregates))
                                 X2007
                                           X2008
                                                     X2009
                                                               X2010 X2011
                   Country X
             North America NA 122.86815 120.10351 114.62372 118.34544
                                                                        NA
   Central & South America NA 24.66038 25.70090 25.28353 26.86867
                                                                        NΑ
54
                    Europe NA 86.69852 85.64615 81.21917 83.82449
                                                                       NA
96
                   Eurasia NA 44.02493 45.06215 40.37198 42.83648
                                                                       NA
               Middle East NA 23.94363 26.09924 27.44746 28.73368
113
                                                                        NA
128
                    Africa NA 14.99456 16.09403 15.92452 16.32675
                                                                       NA
> head(subset(EnergyConsumption,Country %in% aggregates)[,c(1,3:7)])
                               X2007
                                        X2008
                                                  X2009
                                                            X2010 X2011
                   Country
1
             North America 122.86815 120.10351 114.62372 118.34544
                                                                    NA
   Central & South America 24.66038 25.70090 25.28353 26.86867
                                                                    NA
54
                    Europe 86.69852 85.64615 81.21917 83.82449
                                                                    NA
96
                   Eurasia 44.02493 45.06215 40.37198 42.83648
                                                                    NA
113
               Middle East 23.94363 26.09924 27.44746 28.73368
                                                                    NA
128
                    Africa 14.99456 16.09403 15.92452 16.32675
                                                                    NA
```

Data Analysis in Linux

Define the Question

Source: Global Sustainable Energy: Past, Present and Future https://www.coursera.org/course/globalenergy What is the geographical location of the countries that consume less than 219 kWh per year? Note that these are the countries that are essentially living on the equivalent of human power as their source of energy.

Also, what is the geographical location of the countries that consume less than 1,314 kWh per year? Note that these are the countries that are essentially living on the equivalent of oxen power as their source of energy.

How many countries are there in this list?

In terms of population, what is the largest country in this list?

Define the Question

Source: Global Sustainable Energy: Past, Present and Future https://www.coursera.org/course/globalenergy What is the geographical location of the countries that consume less than 219 kWh per year? Note that these are the countries that are essentially living on the equivalent of human power as their source of energy.

Also, what is the geographical location of the countries that consume less than 1,314 kWh per year? Note that these are the countries that are essentially living on the equivalent of oxen power as their source of energy.

How many countries are there in this list? In terms of population, what is the largest country in this list?

Define the Question

Source: Global Sustainable Energy: Past, Present and Future https://www.coursera.org/course/globalenergy What is the geographical location of the countries that consume less than 219 kWh per year? Note that these are the countries that are essentially living on the equivalent of human power as their source of energy.

Also, what is the geographical location of the countries that consume less than 1,314 kWh per year? Note that these are the countries that are essentially living on the equivalent of oxen power as their source of energy.

How many countries are there in this list?

In terms of population, what is the largest country in this list?

Clean the data 3

```
> EConPC <- merge(EnergyConsumption[,c(1,3:7)],Population[,c(1,3:7)],
+ bv.x="Country",bv.y="Country",sort = FALSE,suffixes=c("ECon","Pop"))
> head(EConPC)
                   Country X2007ECon X2008ECon X2009ECon X2010ECon X2011ECon
                                                                           X2007Pop
             North America 122.86815 120.10351 114.62372 118.34544
                                                                       NA 442.99861
2
                   Rermuda
                            0.01018
                                      0.00981
                                               0.00971
                                                         0.00955
                                                                       NΔ
                                                                            0.06692
3
                   Canada 14.02585 13.54625 13.09711 13.00072
                                                                 13.49477 32.93596
4
                 Greenland 0.00826 0.00917
                                              0.00893 0.00893
                                                                       NA
                                                                            0.05753
5
                   Mexico 7.52670 7.26255
                                              6.94764 7.28397
                                                                   7.8079 108.70089
                                   0.00123
6 Saint Pierre and Miguelon
                            0.00122
                                              0.00122 0.00122
                                                                       NΔ
                                                                            0.00610
  X2008Pop X2009Pop X2010Pop X2011Pop
1 447.39306 451.60196 455.69066 459.47897
   0.06739 0.06784 0.06827 0.06868
  33.21270 33.48721 33.75974 34.03059
   0.05756 0.05760
                    0.05764
                              0.05767
5 109.95540 111.21179 112.46886 113.72423
   0.00605 0.00600
                      0.00594 0.00589
```

Clean the data 4

```
> CurrContinent <- aggregates[1]
> for(i in 1:length(EConPC$Country)) {
   if (EConPC$Country[i] %in% aggregates) {
     EConPC$Continent[i] <- EConPC$Country[i]
     CurrContinent <- EConPC$Country[i]
   } else {
     EConPC$Continent[i] <- CurrContinent
> head(EConPC)
                   Country X2007ECon X2008ECon X2009ECon X2010ECon X2011ECon X2007Pop
1
             North America 122.86815 120.10351 114.62372 118.34544
                                                                       NA 442.99861
2
                   Rermuda
                            0.01018
                                    0.00981
                                               0.00971
                                                         0.00955
                                                                        NΔ
                                                                            0.06692
3
                    Canada 14.02585 13.54625 13.09711 13.00072 13.49477 32.93596
4
                 Greenland 0.00826 0.00917 0.00893 0.00893
                                                                       NA
                                                                            0.05753
5
                    Mexico 7.52670 7.26255 6.94764 7.28397 7.8079 108.70089
6 Saint Pierre and Miguelon
                            0.00122 0.00123
                                              0.00122
                                                         0.00122
                                                                            0.00610
                                                                       NA
  X2008Pop X2009Pop X2010Pop X2011Pop
                                            Continent
1 447.39306 451.60196 455.69066 459.47897 North America
  0.06739 0.06784 0.06827 0.06868 North America
  33.21270 33.48721 33.75974 34.03059 North America
                               0.05767 North America
   0.05756
           0.05760 0.05764
5 109.95540 111.21179 112.46886 113.72423 North America
   0.00605 0.00600 0.00594 0.00589 North America
```

Clean the data 5

Compute Energy per capita. 1 quad = 1 Quadrillion BTU = 293,083,000,000 kWh

http://en.wikipedia.org/wiki/Quad_(unit)

EIA's energy converter is helpful (But gives 293,071,111,111 kWh instead):

http://www.iea.org/stats/unit.asp

```
> EConPC$EConPC2007 <- (EConPC[,2] * 293083000000) / (EConPC[,2+5] * 1000000)
> EConPC$EConPC2008 <- (EConPC[.3] * 293083000000) / (EConPC[.3+5] * 1000000)
> EConPC$EConPC2009 <- (EConPC[.4] * 293083000000) / (EConPC[.4+5] * 1000000)
> EConPC$EConPC2010 <- (EConPC[,5] * 293083000000) / (EConPC[,5+5] * 1000000)
> head(EConPC.5)
       Country X2007ECon X2008ECon X2009ECon X2010ECon X2011ECon X2007Pop X2008Pop
1 North America 122.86815 120.10351 114.62372 118.34544
                                                          NA 442.99861 447.39306
       Bermuda 0.01018 0.00981
                                   0.00971
                                            0.00955
                                                               0.06692
                                                                        0.06739
                                                          NA
3
        Canada 14.02585 13.54625 13.09711 13.00072 13.49477 32.93596 33.21270
     Greenland 0.00826 0.00917 0.00893 0.00893
                                                          NΑ
                                                               0.05753
                                                                        0.05756
        Mexico 7.52670 7.26255 6.94764 7.28397 7.8079 108.70089 109.95540
                              Continent EConPC2007 EConPC2008 EConPC2009 EConPC2010
  X2009Pop X2010Pop X2011Pop
1 451.60196 455.69066 459.47897 North America 81288.21 78678.68
                                                                 74389.10
                                                                           76115.31
  0.06784 0.06827 0.06868 North America 44584.35 42664.26 41949.23 40998.13
  33.48721 33.75974 34.03059 North America 124810.03 119537.88 114627.06 112864.91
   0.05760 0.05764 0.05767 North America 42080.06
                                                       46691.65
                                                                 45438.04
                                                                           45406.51
5 111.21179 112.46886 113.72423 North America
                                            20293.74
                                                       19358 12
                                                                 18309.53
                                                                           18981 32
```

Exploratory data analysis 9

> arrange(below1314 desc(EConPC2010))

> a	arrange(below1314, desc(E	CONPCZUIU))		
	Country	X2010ECon	X2010Pop	EConPC2010	Continent
1	Cambodia		14.45368	1240.5711	Asia & Oceania
2	Sierra Leone	0.02034	5.24570	1136.4181	Africa
3	Gambia, The	0.00677	1.75546	1130.2860	Africa
4	Afghanistan		29.12073	1051.2277	Asia & Oceania
5	Guinea-Bissau	0.00557	1.56513	1043.0267	Africa
6	Togo			1027.3326	Africa
7	Haiti	0.03097	9.64892	940.7043	Central & South America
8	Nepal		28.95185	853.9863	Asia & Oceania
9	Tanzania	0.12017	44.28820	795.2408	Africa
10	Comoros	0.00186	0.70612	772.0138	Africa
	Timor-Leste (East Timor)	0.00262	1.08767	705.9839	Asia & Oceania
12	Guinea	0.02447	10.32403	694.6649	Africa
13	Liberia	0.00753	3.68508	598.8784	Africa
14	Uganda		31.50723	581.3804	Africa
15	Malawi		15.44750	580.7587	Africa
16	Congo (Kinshasa)		69.85129	474.0850	Africa
17	Burkina Faso		16.24181		Africa
18	Ethiopia		86.04293	465.9057	Africa
19	Madagascar		20.84662	462.8229	Africa
20	Central African Republic		4.84493	368.4007	Africa
21	Eritrea		5.79298		Africa
22	Niger	0.01834	15.27002	352.0062	Africa
23	Somalia	0.01125	9.76789	337.5533	Africa
24	Rwanda	0.01219	11.05598	323.1447	Africa
25	Mali	0.01256	14.58261	252.4323	Africa
26	Burundi	0.00468	9.86312	139.0664	Africa
27	Chad	0.00364	10.54346	101.1833	Africa
Data Analys	is in Linux				CJ Fearnley, LinuxForce, Inc.

Exploratory data analysis 10

> arrange(helow1314 desc(X2010Pop))

> 0	arrange(below1314, desc(A.	ZUIUPOD))					
	Country	X2010ECon	X2010Pop	EConPC2010	Continent		
1	Ethiopia	0.13678	86.04293	465.9057	Africa		
2	Congo (Kinshasa)	0.11299	69.85129	474.0850	Africa		
3	Tanzania	0.12017	44.28820	795.2408	Africa		
4	Uganda	0.06250	31.50723	581.3804	Africa		
5	Afghanistan	0.10445	29.12073	1051.2277	Asia & Oceania		
6	Nepal		28.95185	853.9863	Asia & Oceania		
7	Madagascar	0.03292	20.84662	462.8229	Africa		
8	Burkina Faso	0.02599	16.24181	468.9888	Africa		
9	Malawi	0.03061	15.44750	580.7587	Africa		
10	Niger	0.01834	15.27002	352.0062	Africa		
11	Mali		14.58261	252.4323	Africa		
12	Cambodia	0.06118	14.45368	1240.5711	Asia & Oceania		
13	Rwanda	0.01219	11.05598	323.1447	Africa		
14	Chad	0.00364	10.54346	101.1833	Africa		
15	Guinea	0.02447	10.32403	694.6649	Africa		
16	Burundi	0.00468	9.86312	139.0664	Africa		
17	Somalia	0.01125	9.76789	337.5533	Africa		
18	Haiti	0.03097	9.64892	940.7043	Central & South America		
19	Togo	0.02309	6.58724	1027.3326	Africa		
20	Eritrea	0.00701	5.79298	354.6554	Africa		
21	Sierra Leone			1136.4181	Africa		
22	Central African Republic	0.00609	4.84493	368.4007	Africa		
23	Liberia	0.00753	3.68508	598.8784	Africa		
24	Gambia, The	0.00677	1.75546	1130.2860	Africa		
25	Guinea-Bissau	0.00557	1.56513	1043.0267	Africa		
26	Timor-Leste (East Timor)	0.00262	1.08767	705.9839	Asia & Oceania		
27	Comoros	0.00186	0.70612	772.0138	Africa		
Data Analysis in Linux CJ Fearnley, LinuxForce, Inc.							

Exploratory data analysis 11

> arrange(below1314, desc(X2010Pop))[,1]

```
[1] "Ethiopia"
                                  "Congo (Kinshasa)"
                                                              "Tanzania"
 [4] "Uganda"
                                  "Afghanistan"
                                                              "Nepal"
 [7] "Madagascar"
                                 "Burkina Faso"
                                                              "Malawi"
[10] "Niger"
                                 "Mali"
                                                              "Cambodia"
[13] "Rwanda"
                                 "Chad"
                                                              "Guinea"
[16] "Burundi"
                                 "Somalia"
                                                              "Haiti"
                                                              "Sierra Leone"
[19] "Togo"
                                  "Eritrea"
[22] "Central African Republic" "Liberia"
                                                              "Gambia, The"
[25] "Guinea-Bissau"
                                  "Timor-Leste (East Timor)" "Comoros"
> sort(below1314[,1])
 [1] "Afghanistan"
                                  "Burkina Faso"
                                                              "Burundi"
 [4] "Cambodia"
                                  "Central African Republic" "Chad"
 [7] "Comoros"
                                  "Congo (Kinshasa)"
                                                              "Eritrea"
[10] "Ethiopia"
                                  "Gambia, The"
                                                              "Guinea"
[13] "Guinea-Bissau"
                                  "Haiti"
                                                              "Liberia"
[16] "Madagascar"
                                 "Malawi"
                                                              "Mali"
[19] "Nepal"
                                 "Niger"
                                                              "Rwanda"
[22] "Sierra Leone"
                                 "Somalia"
                                                              "Tanzania"
[25] "Timor-Leste (East Timor)" "Togo"
                                                              "Uganda"
```

> EConPC\$HSPC2010 <- EConPC\$EConPC2010 / 219

Clean the data 6

```
> EConPC$OSPC2010 <- EConPC$EConPC2010 / 1314
> mostslaves <- subset(EConPC.! Country %in% aggregates)[c(1.16.17.18.12)]
> head(arrange(mostslaves, desc(EConPC2010)),20)
                Country EConPC2010 HSPC2010 OSPC2010
                                                                    Continent
              Gibraltar 646243.96 2950.8856 491.81427
                                                                       Europe
  Virgin Islands, U.S. 629189.38 2873.0109 478.83515 Central & South America
3
   Trinidad and Tobago 223324.05 1019.7445 169.95742 Central & South America
   Netherlands Antilles 210639.39 961.8237 160.30395 Central & South America
   United Arab Emirates 208292.21 951.1060 158.51767
                                                                  Middle East
6
                Iceland 194895.31 889.9329 148.32215
                                                                       Europe
              Singapore 192264.61 877.9206 146.32010
                                                               Asia & Oceania
                  Oatar 188271.83 859.6887 143.28145
                                                                  Middle East
9
                 Kuwait 147911.17 675.3934 112.56557
                                                                  Middle East
10
                Bahrain 138482.26 632.3391 105.38985
                                                                  Middle East
11
                 Norway 117097.57 534.6921 89.11535
                                                                       Europe
12
             Luxembourg 117070.62 534.5690 89.09484
                                                                       Europe
13
                 Canada
                        112864.91 515.3649 85.89415
                                                                North America
14
                 Brunei
                         109649.23 500.6814 83.44690
                                                                Asia & Oceania
15
          United States
                         92891.55 424.1624
                                            70.69373
                                                                North America
16
           Saudi Arabia
                        89398.82 408.2138 68.03564
                                                                  Middle East
17
                          85623.27 390.9738 65.16231
                                                                  Middle East
                   Oman
                          79162.48 361.4725 60.24542
18
              Australia
                                                                Asia & Oceania
19
                Belgium 77269.00 352.8265 58.80441
                                                                       Europe
            Netherlands
                          75441.22
                                   344.4805 57.41341
20
                                                                       Europe
```

Statistical prediction/modeling

No statistical predication or modeling was performed for this energy slaves data analysis.

Interpret results

- Chad and Burundi, two African nations, are the only countries in the world where per capita energy consumption is less than the energy equivalent of the power of a human being, a so-called "energy slave"
- There are 27 nations around the world whose per capita energy consumption is less than the energy equivalent of the power of an ox. The largest of these in terms of population is Ethiopia with 86 million people.
- The remaining 197 nations of the world have at least an ox worth of energy consumption available to them. Gibraltar has the most energy available to them with the equivalent of 2950 human-scale energy slaves or 491 ox-scale energy slaves.

Reporting the results

```
> nrow(mostslaves)
[1] 224
> 224-27
[1] 197
```

Challenge results

- The data on population and energy are impossible to be 100% accurate and precise as they are moving targets and there is no way to ensure that centrally collected data is accurate. Moreover, central data collection systems are subject to various biases and omissions of unknown dimension and character.
- There are other data sources with comparable information (World Bank, UN, etc.). We ought to repeat the analysis on those data to assess if the range of accuracy from the different sources is comparable. If discrepancies exist between the different data sets an assessment to determine which sources are most accurate could affect interpretation of the data.

Reporting the results

Synthesize/write up results

• Energy consumption varies widely around the world. Gibraltar has the equivalent of 2950 human-scale "energy slaves" while nations such as Chad and Burundi have less than one. There are 27 nations in the world who do not have an oxen-scale energy slave at their disposal. The largest country with less than an oxen worth of energy consumption is Ethiopia with 86 million people. Reporting the results

Create reproducible code

See http://www.CJFearnley.com/Data.Analysis.PLUG.July2013.R

Conclusion

The two coursers courses Computing for Data Analysis with Roger Peng

(http://www.coursera.org/course/compdata) and Data Analysis with Jeff Leek

(http://www.coursera.org/course/dataanalysis) provide a great introduction to data analysis using the R Programming language.

- R is included with all major Linux distributions
- So Enjoy!

 The two coursera courses Computing for Data Analysis with Roger Peng

(http://www.coursera.org/course/compdata) and Data Analysis with Jeff Leek

(http://www.coursera.org/course/dataanalysis) provide a great introduction to data analysis using the R Programming language.

- R is included with all major Linux distributions
- So Enjoy!

Conclusion

The two coursers courses Computing for Data Analysis with Roger Peng

```
(http://www.coursera.org/course/compdata) and Data Analysis with Jeff Leek
```

(http://www.coursera.org/course/dataanalysis) provide a great introduction to data analysis using the R Programming language.

- R is included with all major Linux distributions
- So Enjoy!

Thank You

Thank You

Thank You!

Any Questions?

On-line version of this presentation:

http://www.CJFearnley.com/Data.Analysis.PLUG.July2013.pdf