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Abstract

We tell our story of an investigation to discover how to expand Buck-

minster Fuller’s foldable circle, model-building method to other great

circle geometries. We discovered that Fuller’s method can be gen-

eralized by the introduction of what we call supercircles (buildable

constructs that are essentially circular, but have more than 360 de-

grees of arc). We outline our techniques for building the models and

identify relationships to the relevant elements of polyhedron geom-

etry, spherical trigonometry, group theory, combinatorics and graph

theory. In the process we have identified a number of interesting

mathematical questions which may lead to a theory of great circle

foldabilities.



On 12 July 2004 the U.S. Postal Service issued a com-
memorative postage stamp honoring Buckminster Fuller
the legendary American inventor, architect, engineer, de-
signer, geometrician, cartographer and philosopher.



The Cuboctahedron:

Fuller’s Vector Equilibrium (VE)

� 12 radii of unit length

� 24 circumferential edges of unit length

� 8 triangular and 6 square faces or openings

� 4 hexagonal cross-section planes

� A semi-regular or Archimedean polyhedra

� A quasi-regular polyhedra: formed by connect-
ing the vertices where the common mid-sphere of two
regular polyhedra intersect

� A stick model with flexible joints is a “jitterbug” (un-
dergoes a dynamic transformation like a dance)

� The closest packing of spheres around a nuclear ball
can form the VE shape; indeed, when the spheres
form a VE, they aggregate in successive circumferen-
tial layers each of which is a VE

� Two antipodal triangles define an axis of spin which
generates the spherical VE

� The VE is the simplest (least number of modules)
foldable great circle geometry that Fuller described
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“The most important fact about Spaceship Earth:
an instruction manual didn’t come with it.”

— R. Buckminster Fuller



http://www.rwgrayprojects.com/synergetics/s04/figs/f5011a.html

Fig. 450.11A Axes of Rotation of Vector Equilibrium:

Rotation of vector equilibrium on axes through centers of opposite
trianglar faces defines four equatorial great-circle planes.

A.

Rotation of the vector equilibrium on axes through centers of opposite
square faces defines three equatorial great-circle planes.

B.

Rotation of vector equilibrium on axes through opposite vertexes
defines six equatorial great-circle planes.

C.

Rotation of the vector equilibrium on axes through centers of opposite
edges defines twelve equatorial great-circle planes.

D.
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http://www.rwgrayprojects.com/synergetics/s08/figs/f3510.html

Fig. 835.10 Six Great Circles Folded to Form Octahedron.
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http://www.rwgrayprojects.com/synergetics/s04/figs/f5511.html

Fig. 455.11 Folding of Great Circles into Spherical Cube or Rhombic Dodecahedron and
Vector Equilibrium: Bow-Tie Units:

This six-great-circle construction defines the positive-negative spherical tetrahedrons
within the cube. This also reveals a spherical rhombic dodecahedron. The circles are
folded into "bow-tie" units as shown. The shaded rectangles in the upper left
indicates the typical plane represented by the six great circles.

A.

The vector equilibrium is formed by four great circle folded into "bow-ties." The
sum of the areas of the four great circles equals the surface area of the sphere. (4
r2).

B.



http://www.rwgrayprojects.com/synergetics/s04/figs/f5010.html

Fig. 450.10 The 12 Great Circles of the Vector Equilibrium Constructed from
12 Folded Units (Shwon as Shaded).
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Fig. 450.11B Projection of 25 Great-Circle Planes in Vector Equilibrium
Systems: The complete vector equilibrium system of 25 great-circle planes,
shown as both a plane faced-figure and as the complete sphere (3 + 4 + 6 + 12
= 25). The heavy lines show the edges of the original 14-faced vector
equilibrium.
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Fig. 453.01 Great Circles of Vector Equilibrium Define Lowest Common Multiple Triangle: 1/48th of a Sphere: The
shaded triangle is 1/48th of the entire sphere and is the lowest common denominator (in 24 rights and 24 lefts) of the total
spherical surface. The 48 LCD triangles defined by the 25 great circles of the vector equilibrium are grouped together in
whole increments to define exactly the spherical surface areas, edges, and vertexes of the spherical tetrahedron, spherical
cube, spherical octahedron, and spherical rhombic dodecahedron. The heavy lines are the edges of the four great circles of
the vector equilibrium. Included here is the spherical trigonometry data for this lowest-common-denominator triangle of
25-great-circle hierarchy of the vector equilibrium.
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“Mathematics is the science of
structure and pattern in general.”

Massachusetts Institute of Technology,
Department of Mathematics



Our Main Results

Our Project: We started with a question: How to build
a model of the 25 great circles of the VE with foldable
circles? Since Fuller did not demonstrate how to build
such a model, we thought this project might result in
some interesting discoveries (at least we’d learn something
new!).

Result 1: A model of the 25 great circles of the VE
cannot be constructed from 25 identical foldable circle
modules.

Result 2: One can build a model of the 25 great cir-
cles of the VE with 24 identical foldable modules, each a
“supercircle” of 375◦.

Definition: a supercircle is a geometrical construct de-
rived from a circle by cutting along a radius and splicing
in a sector. The resulting figure has more than 360◦ of
arc.



“[Proof is no more than] the testing of the prod-
ucts of our intuition ... Obviously we don’t pos-
sess, and probably will never possess, any stan-
dard of proof that is independent of time, the
thing to be proved, or the person or school of
thought using it. And under these conditions,
the sensible thing to do seems to be to admit
that there is no such thing, generally, as abso-
lute truth in mathematics, whatever the public
may think.”

— Raymond L. Wilder



Result 1: A model of the 25 great circles of the VE
cannot be constructed from 25 identical foldable circle
modules.

Proof : Consider the 1
48

LCD triangle (or Schwartz trian-
gle which by repeated reflection in their sides covers the
sphere a finite number of times) of the 25 great circles
of the VE. Each arc interior to the LCD triangle occurs
48 times in the 25 great circles. But each arc on the
boundary or edge is shared by two LCD triangles and
only occurs 24 times. Since each module must be iden-
tical for our construction, we need to associate each of
the 25 great circles (pigeonholes or boxes) with each of
the 24 distinct occurrences of the boundary arcs (pigeons
or objects). That is impossible (pigeonhole principle or
Dirichlet’s box principle).

Result 2: One can build a model of the 25 great cir-
cles of the VE with 24 identical foldable modules, each a
“supercircle” of 375◦.

Proof : By construction as follows ... .
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This shows one of 24 supercircle modules for the spher-
ical cuboctahedron. This supercircle contains 375◦

when a 15◦ sector is inserted at the dotted line. Score
asterisk (*) lines below and fold outward. Score non*
lines on the topside and fold inward. Attach A to A,
∗C1 to ∗C1, and so on for like labeled vertices.
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This shows the result of folding the supercircle in fig-
ure 1. Connect inwardly within the module B (mid-
point of edge), C1, C2, E and F2. Connect F1 out-
wardly within the module. Connect A (center of tri-
angle), D (vertex), G1, G2, and H (center of square)
to adjoining modules. Notice how in this symmetri-
cal module spaces on one side are inside (shaded) and
outside (unshaded) on the other, positive and neg-
ative space. 24 of these folded supercircle modules
composes the foldable 25 great circle model of the
spherical cuboctahedron (or VE).



Fig. 457.30A Axes of Rotation of Icosahedron:

The rotation of the icosahedron on axes through midpoints of opposite
edges define 15 great-circle planes.

A.

The rotation of the icosahedron on axes through opposite vertexes define
six equatorial great-circle planes, none of which pass through any
vertexes.

B.

The rotation of the icosahedron on axes through the centers of opposite
faces define ten equatorial great-circle planes, which do not pass
through any vertexes.

C.
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Fig. 458.12 Folding of Great Circles into the Icosahedron System:

The 15 great circles of the icosahedron folded into "multi-bow-ties" consisting of four
tetrahedrons each. Four times 15 equals 60, which is 1/2 the number of triangles on the sphere.
Sixty additional triangles inadvertently appear, revealing the 120 identical (although right- and
left- handed) spherical triangles, which are the maximum number of like units that may be used
to subdivide the sphere.

A.

The six great-circle icosahedron system created from six pentagonal "bow-ties."B.

Copyright © 1997 Estate of R. Buckminster Fuller



Fig. 455.20 The 10 great circles of the Icosahedron Constructed from 10 folded units (5 positive units
+ 5 negative units).

Copyright © 1997 Estate of R. Buckminster Fuller



Fig. 457.30B Projection of 31 Great-Circle Planes in Icosahedron System: The
complete icosahedron system of 31 great-circle planes shown with the planar
icosahedron as well as true circles on a sphere (6+10+15=31). The heavy lines
show the edges of the original 20-faced icosahedron.

Copyright © 1997 Estate of R. Buckminster Fuller



Fig. 901.03 Basic Right Triangle of Geodesic Sphere: Shown here is the basic data for the
31 great circles of the spherical icosahedron, which is the basis for all geodesic dome
calculations. The basic right triangle as the lowest common denominator of a sphere’s
surface includes all the data for the entire sphere. It is precisely 1/120th of the sphere’s
surface and is shown as shaded on the 31-great-circle- sphere (A). An enlarged view of the
same triangle is shown (B) with all of the basic data denoted. There are three different
external edges and three different internal edges for a total of six different edges. There are
six different internal angles other than 60º or 90º. Note that all data given is spherical data,
i.e. edges are given as central angles and face angles are for spherical triangles. No chord
factors are shown. Those not already indicated elsewhere are given by the equation 2
sin(theta/2), where theta is the central angle. Solid lines denote the set of 15 great circles.
Dashed lines denote the set of 10 great circles. Dotted lines denote the set of 6 great circles.

Copyright © 1997 Estate of R. Buckminster Fuller



Model-Building Tips

� How to join vertices together?

– Fuller recommended bobby pins
� Advantages

� Tension pulls the model together
� Easy to take apart and put back together

� Disadvantages
� heavy and difficult to use at vertices whose
degree is greater than 4

– Jeannie has tried sewing with thread, slits and
tabs, and yellow wood glue.

– Better methods could be developed (perhaps,
bobby pins with 3–8 prongs).

� Materials: Tyvek, paper, cardboard. Stiffer circles
tend to bend less creating a more perfect great
circle appearance, but they are harder to fold.

� When a model is being put together it has a ten-
dency to be slack until the last few bobby pins are
inserted. The tension then pulls the model taut
and the slack parts stretch out. This shows that
the model requires tensional connections (like one
of Fuller’s tensegrities).



Summary of Fuller’s 7 Foldable Models

Modules GCa SEb Arcs in a module Derivationc

3 3 0 4 × 90◦ = 360◦ octa vertices
Spherical
Octahedron

4 4 0 6 × 60◦ = 360◦ octa faces or tri-
angular VE faces
Spherical
Cuboctahedron
(VE)

6 6 0 2 × (70◦32′ + 2 ×
54◦44′) = 360◦

VE edges

6 6 0 10 × 36◦ icosa vertices
Spherical
Icosidodecahedron

10 10 0 6× (15.522◦+2×
22.238◦) = 360◦

icosa faces

12 12 0 4 × (28.561◦ +
14.458◦ +
19.286◦ +
10.671◦ +
17.024◦) = 360◦

VE vertices or
octa edges

15 15 0 4 × (31◦42′ +
20◦54′+37◦23′) =
360◦

icosa edges

aNumber of Great Circles
bSupercircle Excess: amount of arc in excess of 360◦

cEquators of a Spin Axis for antipodal topological elements



Modules GCa SEb Arcs in a module Derivationc

Our Foldable Supercircle Models

8 7 90◦ 6×45◦+3×60◦ =
450◦

3 + 4 = 7 great
circles of the VE

12 13 30◦ 4(35◦16′ +
54◦44′) +
2(45◦ + 30◦ +
19◦28′16.394′′) =
390◦

3 + 4 + 6 = 13
great circles of
the octa

24 25 15◦ 14 arc lengths:
8 of which occur
twice = 375◦

3 + 4 + 6 + 12 =
25 great circles
of the VE

30 31 12◦ 9 arc lengths: 3
of which occur
four times and
6 of which occur
twice = 372◦

6 + 10 + 15 =
31 great circles
of the icosa

Selected Other Foldable Supercircle Models

3 + 6 = 9, 4 + 6 = 10, etc. GCs of the VE or octa
12 + 24 + 12 + 24 = 96 secondary GCs of the VE
121 secondary great circles of the icosa

aNumber of Great Circles
bSupercircle Excess: amount of arc in excess of 360◦

cEquators of a Spin Axis for antipodal topological elements



http://www.rwgrayprojects.com/synergetics/plates/figs/plate16.html
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Methods to Generate Great Circle Models

� Fuller’s equators of spin technique (rotational sym-
metry)

� Fuller’s secondary equators of spin technique (ro-
tational symmetry)

� Subdivide semi-regular and uniform polyhedra into
characteristic 012 triangles (joining vertex to mid-
point of edge to midpoint of face) then apply above
techniques. Other subdivision techniques can be
imagined.

� Apply these techniques to other semi-regular (Ar-
chimedean) polyhedra or Uniform polyhedra (iden-
tical vertices)

� Any Schwartz triangle

� Drawing “lines” (great circles) connecting two points
on any spherical model (Coxeter)

� Random or statistical techniques



Spherical Trigonometry

1. A great circle has 360◦.

2. The sum of the spherical angles around a point totals 360◦.

3. Arc measure in a great circle is in degrees (or radians) and

is given by the central angle measure.

4. The measure of a spherical angle is given by the measure of

the arc cut off by the sides of the angle at its equator.

5. Law of sines:
sin A

sin a
=

sin B

sin b
=

sin C

sin c
.

6. Law of cosines (sides): three formulas by permuting sides

cos a = cos b · cos c + sin b · sin c · cos A.

7. Law of cosines (angles): three formulas by permuting angles

cos A = − cos B · cos C + sin B · sin C · cos a.

Napier’s Rules

a

B̄

c̄

Ā

b

8. Sine of an unknown part equals the prod-

uct of the cosines of its two opposite parts.

sin = cos · cos

9. Sine of an unknown part equals the prod-

uct of the tangents of its two adjacent parts.

sin = tan · tan



“Dare to be näıve.”

— R. Buckminster Fuller



Observations and Questions Relating to

Graph Theory and Combinatorics

� In general, each module in a great circle geometry is an

eulerian closed path (or chain).

– An eulerian circuit is a closed path in a multigraph (a

non-simple graph with no self-loops, but multiple edges

between any two nodes are allowed) where each edge is

traversed once and only once.

– Euler’s Theorem (Königsberg Bridge Problem): A multi-

graph has an eulerian circuit IFF it is connected (there

is a path from any point to any other point in the graph)

except for isolated vertices and every vertex has even

degree (number of neighbors).

– Clearly, great circle geometries are necessarily connected

and have even degree at every vertex.

– Does graph theory have results for partitioning graphs on

the surface of a sphere into sets of equal eulerian circuits?

– The 3 great circles of VE or octa and the 7 great circles of

the VE or tetra have doubled edges. Does graph theory

offer any results for exploring these special cases?

� Foldability can be seen as a graph theoretical property with

the requirement that a spherical multigraph be partitioned

into a disjoint set of (equal) eulerian circuits (the modules).

Fuller’s foldability property requires, in addition, that the

sum of the arc measures in each circuit equal 360◦.

� Is there a “spherical” or “polyhedral” graph theory that can

explain some of the properties of great circle foldability.



Other Observations and Questions

� Do there exist any great circle maps besides the seven given

by Fuller that can be constructed with 360◦ modules?

� The number of supercircle modules seems to be exactly one

off from the number of great circles in the aggregate models.

� super-duper circles are great circle models folded from

a single module (which will have many spliced-in circles,

supercircles, and/or sectors)

– How to build super-duper circle modules? They are re-

ally complicated!

� If there are only 7 Fuller modules (with exactly 360◦), a

reason may be found in the theory of polyhedral groups1.

Does anyone see the connection?

– Why? The the number of great circles generated by

Fuller’s modules are divisors of the number of elements in

the polyhedral groups. It is remarkable how frequently

näıve numerological arguments turn out to be true in

polyhedral geometry!

– Complete Tetrahedral Symmetry Group: Isomorphic to

S4 (the symmetric group of order 24).

– Tetrahedral Rotation Symmetry Group: Isomorphic to

A4 (the alternating group of order 12).

– Octahedral Rotation Symmetry Group: Isomorphic to

S4 (the symmetric group of order 24).

– Icosahedral Rotation Symmetry Group: Isomorphic to

A5 (the alternating group of order 60).

1H. S. M. Coxeter, Introduction to Geometry, John Wiley & Sons, Inc., second edition, pp. 270–277.



“A mathematical theory is not to be con-
sidered complete until you have made it so
clear that you can explain it to the first man
whom you meet on the street.”

An Old French Mathematician
quoted by David Hilbert



Toward a Theory of Foldability

� A Theory of Foldability would explain the properties that we

have been discussing as a collection of relationships and clar-

ify the connections with other areas of mathematics. This

is a partial list of some of the properties that would need to

be explained:

– Which great circle geometries are foldable with perfect

360◦ circles? Just the 7 that Fuller found?

– How to explain the doubled-edges in some of the models?

– Are all sets of great circles foldable? Is the supercircle

method general purpose and capable of folding any such

set?

– Can foldability be seen as a continuum from individual

arcs to foldable polygon arcs, to more complicated fold-

able arc-modules, to foldable perfect circle modules (a

zero or equilibrium element), to supercircle modules, to

super-duper “circles?” How could we define a metric for

this progression?



“There is no branch of mathematics, however
abstract, which may not someday be applied
to phenomena of the real world.”

— Nikolai Ivanovich Lobatchevsky



Applications

� Objects of art

� Spherical trigonometry education (a lost subject!)

� Math education in general

� Polyhedra Geometry

� Graph theory

� Combinatorics

� Group Theory

� Geodesics (Fuller did this work before developing the dome)

� Electron orbits

� Cell growth

� Protein folding

� Origami

� Other paper folding model-building techniques (e.g., Prof.

Hilton wrote a book with Jean Pederson ”Build Your Own

Polyhedra” which discusses folding long strips of paper)



The Supercircle Poem

By Jeannie Moberly

Two circles isometrical lived in sweet harmony

Began to brawl, could not agree on whose was whose degree
The poor sad cone was left alone quite unequivocal
And on a lark with extra arc ran selfish supercircle.
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THE SEVENTH ANNUAL INTERNATIONAL

CONFERENCE

OF

BRIDGES:

MATHEMATICAL CONNECTIONS

IN ART, MUSIC, AND SCIENCE

SOUTHWESTERN COLLEGE

WINFIELD, KANSAS

July 30 August 1, 2004

Representative Conference Topics:

Mathematical Visualization, Mathematics and Music, Computer

Generated Art, Symmetry Structures, Origami, Mathematics

and Architecture, Tessellations and Tilings, Aesthetical Connec-

tions between Mathematics and Humanities, Geometric Art in

Two and Three Dimensions, Geometries in Quilting

Website: http://www.sckans.edu/ bridges/



OSWEGO

Tensegrity

Learn about

to participate in the course contact John Belt <belt@oswego.edu>

to register and see pictures of last year’s workshop on geodesics go to

JULY 5  − JULY 23 : SYNERGETICS IN THE CLASSROOM 

HTTP://SNEC.SYNERGETICISTS.ORG

on beautiful lake ontario

SUNY OSWEGO,   NY

this summer

in

9 AM − 5 PM

SUN JULY 25

SAT JULY 24

workshop

WILBER HALL, DESIGN STUDIO, ROOM 350

taught by Joe Clinton, facilitated by John Belt



SNEC: Synergeticists

Of The NorthEast Corridor

http://SNEC.Synergeticists.org

Synergetics is the discipline of holistic thinking which
R. Buckminster Fuller introduced and began to for-
mulate. Synergetics provides a method and a philoso-
phy for problem-solving and design and therefore has
applications in all areas of human endeavor. Syner-
getics is multi-faceted: it involves geometric model-
ing, exploring inter-relationships in the facts of expe-
rience and the process of thinking. Synergetics en-
deavors to identify and understand the methods that
Nature actually uses in coordinating Universe (both
physically and metaphysically).

Synergetics is studied by a wide-range of people from
artists to business people to teachers and truck drivers
to scientists, architects, designers, mathematicians and
engineers. SNEC is an organization to bring together
these diverse people in face-to-face workshops, sym-
posia, seminars, and other ad-hoc or planned meet-
ings to better understand the many facets of this di-
verse discipline and its methods.

Report on the March 2004 SNEC Symposium:

http://SNEC.Synergeticists.org/snec.meeting.2004.03.html

Report on the June 2003 SNEC Workshop:

http://SNEC.Synergeticists.org/snec.meeting.2003.06.html


